Description:

Rainwater filter for larger roof areas. Filter for installation in concrete ring or other structural chamber ($\emptyset 2000$ or $\emptyset 2500 \mathrm{~mm}$). The filter can be delivered directly to site, or pre-fitted off-site.

The proven 3P two-step Volume Filter cleaning system gives a high level of filtering efficiency, independent of flow rate. Due to the steep inclination of the two step filter cartridge, the filtered out debris is continuously washed away to sewer. The sewer outlet is installed within the chamber wall. The filtered out material falls to the base of the chamber and is washed away during the next intense rainfall event.

How it works:

1. The incoming rainwater is backed up and is then equally distributed across the cascades = principle of overflow
2. Pre cleaning through the cascades, coarse dirt particles are led across the primary filter cascades directly to the sewer
3. Pre-filtered water then flows over the secondary filter sieve (Mesh size 0,390 x $0,980 \mathrm{~mm})$, due to the special mesh structure of the sieve, any dirt is led directly into the sewer, therefore low maintenance intervals

Technical Data:

Filter according to DIN 1989-2, Typ C
Inlet rainwater: $1 \times$ DN 300
Outlet to storage: DN 250
Outlet to sewer: DN 300
Height difference between inlet and outlet: 320 mm (center)

Filter body material: stainless steel 4016 mesh filter material: stainless steel 1.4301 mesh size: $0.390 \times 0.980 \mathrm{~mm}$
Dimensions: $1200 \times 1300 \times 800 \mathrm{~mm}$
(Dimension: C = 780 + foot adjustment 200 mm)
Weight: $39,5 \mathrm{~kg}$

Connection capacity according to DIN 18481: $3933 \mathrm{~m}^{2}$ roof area at rainfall intensity of $300 \mathrm{I} /$ sxha). A larger area can be connected using a bypass-installation.

Maximum flow rate of filter sieve: $18 \mathrm{l} / \mathrm{sec}=$ $64,8 \mathrm{~m}^{3}$ clean water per hour.

Inlet rainwater:	DN 300
Outlet to storage:	DN 250
Outlet to sewer:	DN 300

Height difference between inlet and outlet: 600 mm , DN 300 KG elbows are supplied for mounting in concrete ring
The filter should be cleaned depending on the contamination loading 1-2 times during the year.

4. Cleaned water is led into the cistern
5. Dirt goes to the sewer

A 780 mm
B 1070 mm
C 780 mm
D 1200 mm
E 600 mm
F 275 mm
G 880 mm

Example:

Installation of the filter in a pilot shaft

Source: Prof. Dr.-Ing. Mathias Uhl Muenster University of Applied Sciences
80% of the average intensity of rainfall in Germany is under $15 \mathrm{I} /($ sxha), resulting a volume flow rate of $5,91 / \mathrm{s}$ with a roof area of $3933 \mathrm{~m}^{2}$.

Diameter of tube	maximum flow rate	connectable area max. $200 \mathrm{I} /($ sxha)	connectable area max. $300 \mathrm{I} /($ sxha)
DN	I / s	m^{2}	$\mathrm{~m}^{2}$
300	118	5800	3933

Text for invitation of tenders:

Pos. Quantity Article
1.1 \qquad 3P Volume Filter VF12
Rainwater filter according to DIN 1986: for roof areas up to $3933 \mathrm{~m}^{2}$ at rainfall intensity of $300 \mathrm{I} /(\mathrm{sxha})$ Filter for installation in concrete ring ($(2000 \mathrm{~mm}$ or $\emptyset 2500 \mathrm{~mm}$)
Fins unit with fine filter can be removed easily
Material: stainless steel
1.2 \qquad Concrete shaft for 3P Volume Filter VF12
including installation of the Volume Filter VF12
Inner diameter 1200 mm , Height 75 cm , Conus $\emptyset 100 / 60-60 \mathrm{~h}$ with Goebel lid resilient up to 5 t
Shaft has to be equipped with 4 KG-bushings and Forsheda Seals
Inlet rainwater: 1x DN 300, Outlet to storage: DN 250, Outlet to sewer: DN 300
The bottom of the shaft should have a diagonal decline $(5 \mathrm{~cm})$ to the channel interface

Optimal installation:
As shown below with feeding-in and bypassinstallation. High security because of bypassinstallation, therefore larger roof areas can be connected.

Price in $€$

